Whole-exome SNP array identifies 15 new susceptibility loci for psoriasis.

Related Articles

Whole-exome SNP array identifies 15 new susceptibility loci for psoriasis.

Nat Commun. 2015;6:6793

Authors: Zuo X, Sun L, Yin X, Gao J, Sheng Y, Xu J, Zhang J, He C, Qiu Y, Wen G, Tian H, Zheng X, Liu S, Wang W, Li W, Cheng Y, Liu L, Chang Y, Wang Z, Li Z, Li L, Wu J, Fang L, Shen C, Zhou F, Liang B, Chen G, Li H, Cui Y, Xu A, Yang X, Hao F, Xu L, Fan X, Li Y, Wu R, Wang X, Liu X, Zheng M, Song S, Ji B, Fang H, Yu J, Sun Y, Hui Y, Zhang F, Yang R, Yang S, Zhang X

Abstract
Genome-wide association studies (GWASs) have reproducibly associated ∼40 susceptibility loci with psoriasis. However, the missing heritability is evident and the contributions of coding variants have not yet been systematically evaluated. Here, we present a large-scale whole-exome array analysis for psoriasis consisting of 42,760 individuals. We discover 16 SNPs within 15 new genes/loci associated with psoriasis, including C1orf141, ZNF683, TMC6, AIM2, IL1RL1, CASR, SON, ZFYVE16, MTHFR, CCDC129, ZNF143, AP5B1, SYNE2, IFNGR2 and 3q26.2-q27 (P<5.00 × 10(-08)). In addition, we also replicate four known susceptibility loci TNIP1, NFKBIA, IL12B and LCE3D-LCE3E. These susceptibility variants identified in the current study collectively account for 1.9% of the psoriasis heritability. The variant within AIM2 is predicted to impact protein structure. Our findings increase the number of genetic risk factors for psoriasis and highlight new and plausible biological pathways in psoriasis.

PMID: 25854761 [PubMed - in process]

Development and preliminary evaluation of a 90 K Axiom® SNP array for the allo-octoploid cultivated strawberry Fragaria × ananassa.

Development and preliminary evaluation of a 90 K Axiom® SNP array for the allo-octoploid cultivated strawberry Fragaria × ananassa.

BMC Genomics. 2015 Dec;16(1):1310

Authors: Bassil NV, Davis TM, Zhang H, Ficklin S, Mittmann M, Webster T, Mahoney L, Wood D, Alperin ES, Rosyara UR, Koehorst-Vanc Putten H, Monfort A, Sargent DJ, Amaya I, Denoyes B, Bianco L, van Dijk T, Pirani A, Iezzoni A, Main D, Peace C, Yang Y, Whitaker V, Verma S, Bellon L, Brew F, Herrera R, van de Weg E

Abstract
BACKGROUND: A high-throughput genotyping platform is needed to enable marker-assisted breeding in the allo-octoploid cultivated strawberry Fragaria × ananassa. Short-read sequences from one diploid and 19 octoploid accessions were aligned to the diploid Fragaria vesca 'Hawaii 4' reference genome to identify single nucleotide polymorphisms (SNPs) and indels for incorporation into a 90 K Affymetrix® Axiom® array. We report the development and preliminary evaluation of this array.
RESULTS: About 36 million sequence variants were identified in a 19 member, octoploid germplasm panel. Strategies and filtering pipelines were developed to identify and incorporate markers of several types: di-allelic SNPs (66.6%), multi-allelic SNPs (1.8%), indels (10.1%), and ploidy-reducing "haploSNPs" (11.7%). The remaining SNPs included those discovered in the diploid progenitor F. iinumae (3.9%), and speculative "codon-based" SNPs (5.9%). In genotyping 306 octoploid accessions, SNPs were assigned to six classes with Affymetrix's "SNPolisher" R package. The highest quality classes, PolyHigh Resolution (PHR), No Minor Homozygote (NMH), and Off-Target Variant (OTV) comprised 25%, 38%, and 1% of array markers, respectively. These markers were suitable for genetic studies as demonstrated in the full-sib family 'Holiday' × 'Korona' with the generation of a genetic linkage map consisting of 6,594 PHR SNPs evenly distributed across 28 chromosomes with an average density of approximately one marker per 0.5 cM, thus exceeding our goal of one marker per cM.
CONCLUSIONS: The Affymetrix IStraw90 Axiom array is the first high-throughput genotyping platform for cultivated strawberry and is commercially available to the worldwide scientific community. The array's high success rate is likely driven by the presence of naturally occurring variation in ploidy level within the nominally octoploid genome, and by effectiveness of the employed array design and ploidy-reducing strategies. This array enables genetic analyses including generation of high-density linkage maps, identification of quantitative trait loci for economically important traits, and genome-wide association studies, thus providing a basis for marker-assisted breeding in this high value crop.

PMID: 25776673 [PubMed - in process]

High resolution SNP array (SNP-A) reveals cryptic indicating information about MDS-related myeloid malignancies.

High resolution SNP array (SNP-A) reveals cryptic indicating information about MDS-related myeloid malignancies.

Leuk Lymphoma. 2015 Feb 27;:1-12

Authors: Chi K, Li Y, Ding Q, Xu L, Chen Y, Wang X

PMID: 25721904 [PubMed - as supplied by publisher]

Microfluidic Linear Hydrogel Array for Multiplexed Single Nucleotide Polymorphism (SNP) Detection.

Related Articles

Microfluidic Linear Hydrogel Array for Multiplexed Single Nucleotide Polymorphism (SNP) Detection.

Anal Chem. 2015 Feb 12;

Authors: Jung YK, Kim J, Mathies RA

Abstract
A PDMS-based microfluidic linear hydrogel array is developed for multiplexed single nucleotide polymorphism (SNP) detection. A sequence of three-dimensional (3D) hydrogel plugs containing the desired DNA probes is prepared by UV polymerization within a PDMS microchannel system. The fluorescently labeled target DNA is then electrophoresed through the sequence of hydrogel plugs for hybridization. Continued electrophoresis provides an electrophoretic wash that removes nonspecific binders. The capture gel array is imaged after washing at various temperatures (temperature gradient electrophoresis) to further distinguish perfect matches from mismatches. The ability of this microdevice to perform multiplex SNP genotyping is demonstrated by analyzing a mixture of model E. coli bacterial targets. This microfluidic hydrogel array is ~1000 times more sensitive than planar microarrays due to the 3D gel capture, the hybridization time is much shorter due to electrophoretic control of the transport properties, and the stringent wash with the temperature gradient electrophoresis enables analysis of single nucleotide mismatchs with high specificity.

PMID: 25673175 [PubMed - as supplied by publisher]

Page 1 of 4412345»102030...Last »

RSS Genotyping industry news